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Abstract

Extending a previous analytical investigation, the e�ect of wall heating on the hydrodynamics of falling liquid
®lms was studied by calculating the fractal dimensions of reconstructed phase spaces from experimental
measurements. The results illustrated that the wall heat ¯ux has a signi®cant in¯uence on the hydrodynamics of

falling liquid ®lms, especially in the case of low ¯ow rates. The causes for this e�ect may be attributable to density
variations within the ®lms and thermocapillarity e�ects acting on the free surface interface of the ®lms, particularly
for situations where wall heating is present. The combined e�ect of these two factors may be more apparent for thin

®lms with a low ¯ow rate than for thicker ®lms with higher ¯ow rates. The results indicated that the hydrodynamics
and heat transfer of falling liquid ®lms present a conjugate problem, especially in the case of low ¯ow rates, and
that this conjugation should be considered in any the study of heat transfer of falling liquid ®lms. 7 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The ¯ow of falling liquid ®lms is a complicated

phenomenon and involves a number of parameters and

characteristics not previously attributed to this physical

process. Decades of previous studies have, however,

con®rmed that the ¯ow of falling liquid ®lms is intrin-

sically unstable [1,2]. Typically, one ®nds small or ®ne

waves on the free surface interface of ®lms at, or near

the exit of ori®ces or ¯ow distributors. Experimental

results have con®rmed that these small waves coalesce

into larger, sometimes solitary waves as the ®lm con-
tinues to ¯ow downwards and move farther and
farther from the exit [3±6]. Previous theoretical and ex-

perimental studies have indicated that falling liquid
®lm ¯ow is transient and nonlinearly unstable, and has
a ``chaotic'' nature [7±11]. Statistical methods have
previously been widely used to reveal the ¯ow charac-

teristics of these falling liquid ®lms [12,13]. More
recently, a number of researchers [14,15] have
employed nonlinear methods to describe the wave

characteristics of falling liquid ®lms. In these studies,
the phase space was reconstructed from the experimen-
tal time series of the ®lm thickness within the frame-

work of deterministic chaos. As a result, several
indexes of deterministic chaos analyses were extracted
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from these reconstructed spaces to describe the hydro-
dynamics of falling liquid ®lm ¯ow. Both of the pre-

vious investigations primarily concerned with the
hydrodynamics of the ®lm ¯ow and as a result, were
conducted under the conditions of no wall heating.

Several other previous investigations have demon-
strated that the presence of wall heating may have an
important e�ect on the wave nature of the falling
liquid ®lm [16,17]. In many cases, the experimental in-

vestigations were conducted in such a manner that this
e�ect was visible to the naked eye. As stated in the lit-
erature [18±20], asymptotic motion in dissipative sys-

tems takes place on sets which usually have zero
volume in state space. If such a set is chaotic, it usually
has a non-integer dimension (fractal dimension), which

is smaller than the dimension of the state space. The
chaotic nature of the falling liquid provides some indi-
cation that if determined, the fractal dimension could

be used to demonstrate the e�ect of wall heating on
the ®lm behavior.
In the current investigation, phase spaces were

reconstructed from experimental time series, and the

fractal dimensions were calculated. These calculated
fractal dimensions indicated that, the hydrodynamic
characteristics of falling liquid ®lms with and without

wall heating are di�erent.

2. Experimental apparatus

The experimental apparatus shown in Fig. 1 was
designed and constructed. This test apparatus is similar
to one previously described by the authors [21], and
some of the results utilized in the previous work were

also utilized herein.
The entrance section of the test apparatus consisted

of a 90 mm long plexiglass cylinder, 18 mm outer di-

ameter. The test section was fabricated from a 300 mm
long, 0.5 mm thick and 18 mm outer diameter stainless
steel cylinder. The surface ®nish and measurement

uncertainty in the outer diameter were 1.6 mm and 0.05
mm, respectively. The falling liquid ®lm was formed
from a 0.5 mm width circle ori®ce. A 100 mm inner di-

ameter, 150 mm deep water container at the end of the
test section and the upper water tank was used to keep

the water level stable.
A optical±electronic method was used to measure

the thickness of falling liquid ®lm [18]. A sketch of the

measuring system is shown in Fig. 2. The basic prin-
ciple is as follows. A semiconductor laser beam from
laser 1 is expanded by lens 2. The beam is then focused
by a cylindrical lens 3 to form a light sheet at the

measurement spot, with a sheet thickness of less than
0.5 mm. In experiments, the focus point of the cylin-
drical lens is positioned on the dashed line 8 in Fig. 2.

The light sheet is stretched in the horizontal direction
to the length scale of the cylindrical lens which is
much wider than the liquid ®lm thickness, but the

beam is quite thin in the ®lm ¯ow direction. Hence,
the entire liquid ®lm is within the sheet to ensure a bet-
ter spatial resolution. When a band of light reaches the

surface of a transparent object, part of the light will be
re¯ected and part will be refracted. The re¯ected and
refracted light will stray from the original direction if
the incident light is not perpendicular to the surface.

Hence, as shown in Fig. 2, a photodiode or screen can
be placed directly behind the test model to indicate the
light that does not pass through the object. Then, in

the ideal situation, the light encountering liquid ®lm is
completely de¯ected from the direction of the incident

Nomenclature

d fractal dimension
k embedding dimension
m dimension of compact manifold

q heat ¯ux
Re Reynolds numbers, Re � 4G=m
x i time series

yi point of reconstructed phase space

Greek symbols
G liquid mass ¯ow rate per width

d distance to the nearest neighbor
hdi average d
m dynamic viscosity

t delay time

Fig. 1. Sketch of the experimental system. 1 Ð Entrance and

test section, 2 Ð upper tank, 3 Ð lower tanker, 4 Ð pump,

5 Ð ¯owmeter.
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light sheet and the intensity variation behind the
model will be related to the change of the liquid ®lm

thickness. As a result, the intensity variation sensed by
photodiode 7 will represent the changes of the ®lm
thickness.

The measuring system used a 2 mW semiconductor
laser as the light resource. A 10 times expander was
used to expand the laser light. The 15 � 15 mm cylin-

drical lens was used to focus the expanded laser light
on the liquid ®lm with a focal length of 40 mm. A 25
mm diameter ¯at convex lens was aligned with the

laser light axis 90 mm behind the focal point. The
focal length of the convex lens was 50 mm. The falling
liquid ®lm thickness signals were magni®ed with this
convex lens. The screen and the photodiode were

placed 600 and 270 mm behind the ¯at convex lens, re-
spectively. The system was calibrated on line. During
the experiment, a video camera was used to measure

the average ®lm thickness by taking pictures of transi-
ent wavy ®lms, then using image software to determine
the shift length of wave interface from the original.

The practical ®lm thickness could thus be determined
for every picture and the average ®lm thickness could
then be calculated. The magni®cation coe�cient of the

video camera system was 0.50 mm/65 TV lines. To
assure the measurement precision, a 450 line video
camera was used with a shutter speed of 1/1000 s.
The photodiode with a 2.7� 2.7 mm optical window

was also utilized to measure the relative shift of the
®lm thickness from the average value. The noise level
was below 0.4 mV with pulse ascendant and descen-

dant time intervals of less than 3.5 ms. Its response fre-
quency band was approximately 0.1 MHz. The
response sensitivity was 2500 mV/mW (1 mW variation

of incident laser of wavelength 850 nm would cause a
2500 mV output). The wavelength of the semiconduc-

tor laser was about 650 nm which was within the oper-
ating range of the photodiode. The photodiode
response at the semiconductor wavelength was about

half that of the 850 nm wavelength. The photodiode
was mounted on the base of a micrometer. After every
test run, the photodiode was calibrated without the

liquid ®lm by shifting the photodiode by 0.05 mm
steps from one edge of the sensor window to the op-
posite edge while recording the photodiode output at

the starting and ending spot of every shift. The photo-
diode output signals are assumed to vary approxi-
mately linearly with ®lm thickness over every 0.05 mm
step. For wave amplitudes of about 0.5 mm, the

measurement error caused by this assumption would
be small. Smaller micrometer steps could improve the
measurement precision.

A HP 34970A Data Acquisition/Switching Unit and
a HP 34902A 16-channel multiplexer were used for the
data acquisition. The system has 61/2-digit multimeter

accuracy with stability and noise rejection. The reading
rate is up to 600 readings per second on a single chan-
nel. In this experiment, the integration interval was set

to 0.2 PLC (equivalent to 4 ms); the corresponding res-
olution was 51/2; and the attached noise error was
(range of measurement)� 0.1%.
In every test run, the experimental data were col-

lected by a PII/300 PC. Ten thousand data points were
collected in each data set. The time interval between
the data points was 0.015 s. The uncertainty of the

sensor output was measured as below 0.4%.

3. Phase space reconstruction

The hydrodynamics of falling liquid ®lm ¯ow can be

represented by a system characterized through the time
evolution of the physical properties, such as ®lm thick-
ness. Basically, the hydrodynamic characteristics can

be modeled by a group of partial di�erential equations.
In essence the above system can be described by the
vector variables x consisting of n independent com-

ponents. The state of the system at a given time can be
determined by a point x in the state space represented
by Rn: The state space then has an in®nite dimension
for the system described by a group of nonlinear par-

tial di�erential equations. The asymptotic (for large
time) solutions of nonlinear equations may have com-
plex non-periodic structures associated with their expo-

nential divergence and sensitive dependence on initial
conditions. The concept of deterministic chaos is re-
lated to this asymptotic behavior. For the open dissi-

pative systems, such as ®lm ¯ow, the volume of the
state space decreases to zero asymptotically. The
asymptotic trajectories in state space ®ll out a chaotic

Fig. 2. Sketch of the ®lm thickness measuring system. 1 Ð

Laser source, 2 Ð expander, 3 Ð cylindrical lens, 4 Ð tested

column, 5 Ð liquid ®lm, 6 Ð condenser, 7 Ð photodiode,

8 Ð dash line.
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attractor characterized by a set of non-integer dimen-
sions. Therefore, the asymptotic orbits are within a

subset of the state space with a lower dimension than
that of the original.
The studies of Takens [19] and Packard et al. [20]

indicated that, a phase portrait of chaotic trajectories,
equivalent in some sense to that of the underlying
dynamic system, could be reconstructed from time

series. The commonly used reconstruction procedure is
the method of delay. This method can be brie¯y sum-
marized as follows. For a time series

x�t0�, x�t1�, . . . ,x�tN�, a phase space trajectory can be
reconstructed by choosing a delay time t and form a
series of k-tuples yi��x�ti �, x�ti�t�, . . . ,x�ti�t�kÿ 1���:
When the embedding dimension k is chosen properly,

this series, yi, represents a trajectory that is di�eo-
morphic to a corresponding solution of the governing
evolution equations. In this reconstruction, N should

be large. The embedding dimension is a minimum
dimension of an Euclidean space Rk such that there is
a smooth transformation from the original state space

to Rk such that it is one-to-one at every point of the
attractor. Takens' theorem demands that kr2m� 1,
where m is the dimension of a compact manifold, M.

Takens' theorem states that a compact manifold M
with ®nite dimension, m, containing the attractor exists
although the state space is of in®nite dimension.
For an in®nite amount of noise-free time series, the

time delay, t, can in principle be chosen almost arbi-
trarily. However, the experimental time series are
neither in®nite nor noise-free. Therefore, the delay

time should be chosen so that the coordinates of the
reconstructed space are mutually independent. Fraser
[22] suggested the use of the mutual information as the

criterion for the choice of t: The procedure used here
was to calculate the mutual information of x(t ) and
x�t� t�, in order to determine how dependent the
values of x�t� t� were on the values of x(t ). The value

of t which produces the ®rst local minimum of the
mutual information can be used for phase portraits. In
this paper, the method of Fraser [22] was used to

reconstructed the phase space.

4. Fractal dimension of reconstructed phase space

The nearest-neighbor method of Badii and Politi [23]

was used to estimate the fractal dimension. As stated
in the literature [24], this method appears to be more
accurate than the more widely used correlation dimen-

sion procedure. Consider, for example, a set of N
points of an experimental series that lie on the recon-
structed phase space. A point, x, in this phase space

can be arbitrarily selected as a reference point and a
subset of n points denoted by yi �i � 1, 2, . . . ,n, n < N�
from the original set of N points can be chosen at ran-

dom. The term d is then de®ned as the distance to the
nearest neighbor i.e., d � minkxÿ yik: This calculation

is repeated over many randomly chosen reference
points and a average hdi is obtained. The process is
then repeated for a sequence of n values up to n �
Nÿ 1: It is argued that hdi0nÿ1=d where d is the frac-
tal dimension of the chaotic attractor. Hence, the nega-
tive, inverse slope of a loghdi vs. log n plot is the

fractal dimension. In order to alleviate the e�ect of
noise in experimental time series, d should be calcu-
lated for the 10th or 100th nearest neighbor [25]. The

phase space was reconstructed by the experimental
time series of this study with the above-mentioned
methods. The available time series included 10,000
points. The state parameters of the experiments are

listed in Table 1.
The calculated fractal dimensions indicates that the

¯ow of falling liquid ®lms is chaotic, regardless of

whether the wall is heated or not. This is consistent
with the conclusion of the previous experimental obser-
vations, where the ¯ow of falling liquid ®lm was con-

sidered to be turbulent at the Reynolds number greater
than 250±400 [26]. Table 1 further illustrates that the
fractal dimensions of the Reynolds numbers 1250 and

1690 have the maximum values; the lowest values for
Reynolds numbers 2280 and 3150; and the middle
value for the Reynolds number 1140. The precise re-
lationship between the fractal dimension and the hy-

drodynamic characteristics of the ®lm ¯ow is
unknown. However, it is clear that the fractal dimen-
sion varies directly with the wall heat ¯ux for the cases

of Reynolds numbers ranging from 1140 to 2280. It
does appear, however, that no rule dominates the vari-
ation between the fractal dimension and the ¯ow hy-

drodynamics. The calculated fractal dimensions vary
irregularly with wall heat ¯ux at the lowest Reynolds
number.

Table 1

Experimental parameter and calculated fractal dimension

(a) Re � 1140

q (W/m2) 0.0 1900 5100 8000 11,000

d 8.59 8.89 8.32 8.06 9.47

(b) Re � 1250

q (W/m2) 0.0 1800 4900 10,500

d 9.35 10.64 10.33 10.23

(c) Re � 1690

q (W/m2) 0.0 1800 4800 10,800

d 9.11 8.94 9.44 9.45

(d) Re � 2280

q (W/m2) 0.0 1800 5300 10,600 17,800

d 7.31 6.84 7.19 7.57 7.47

(e) Re � 3150

q (W/m2) 0.0 4700 11,100 14,300 18,000

d 7.55 7.68 7.65 7.55 7.55
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In the cases of Reynolds numbers 1250, 1690 and
2280, the calculated fractal dimensions apparently vary

with the heat ¯ux, but remain nearly constant for the
high heat ¯ux cases. For the case where the Reynolds
number is 3150, the ¯ow hydrodynamics appear to be

insensitive to the heat ¯ux. This implies that the
characteristics of falling liquid ®lm ¯ow are invariant
with heat ¯ux at high ¯ow rates. As a result, it can be

concluded that wall heating has an in¯uence on the hy-
drodynamics of falling liquid ®lms, and that this in¯u-
ence is quite strong for the cases of low ¯ow rates.

This result is consistent with the analytical conclusions
found in the literature [17]. And it is also consistent
with the conclusion of experimental measurements [13].
The previous investigations [13] stated that the e�ect

of increasing the heat ¯ux on the variation of the ®lm
thickness was stronger at low Reynolds numbers than
for high Reynolds numbers. This variation makes the

results insensitive to the heat ¯ux for Rer5000: Based
upon the previous experimental results [13], it is appar-
ent that the nondimensionalized variance of ®lm thick-

ness with increasing heat ¯ux becomes narrower in the
region of high ¯ux.
The e�ect of wall heating on the hydrodynamics of

falling ®lms might result from two causes. First is that
the e�ect of the buoyancy is strong in the case of low
¯ow rates. This causes lateral motions within the ®lm
that makes the ¯ow di�erent from the original con-

ditions. Because the ®lm thickness is small in the case
of low ¯ow rates, the e�ect of buoyancy might also be
more apparent, and it has stronger in¯uence on the

wave pattern than for high ¯ow rates. Another cause is
the role that the thermocapillarity plays on the free
surface interface of the liquid ®lm. The falling ®lm

¯ow is intrinsically unstable, and the free interface is
wavy. The experimental results have con®rmed that
the temperature of the wave troughs on the free inter-
face is higher than for the wave crests for the case of

wall heating, and as a result, the thermocapillary force
will draw liquid from the wave troughs to the wave
crests. This process will distort the original waveform.

However, the thermocapillary e�ect might become
weaker for the thick ®lms, so that the in¯uence in this
case is not as strong as it is for the thin ®lms.

5. Conclusions

The calculated fractal dimension of the recon-
structed phase space has con®rmed that wall heating

has an e�ect on the hydrodynamics of falling liquid
®lms, especially in the case of low ¯ow rate. The
reasons for this can be attributed to the function of

buoyancy within ®lms and the thermocapillarity on the
free interface of the ®lms. The experiments illustrate
that this in¯uence is apparent in the case of low heat

¯ux and but remains invariant for the case of high
heat ¯ux of Reynolds number range from 1250 to

1690. For the ¯ow of Reynolds number 3150, the ¯ow
hydrodynamics appear to be almost insensitive to the
wall heating. For the ¯ow of Reynolds number 1140,

the in¯uence is always strong. This phenomenon
implies that the ¯ow hydrodynamics and wall heating
of falling liquid ®lms are coupled. In addition, the ¯ow

characteristics are quite complicated and cannot be
described completely by the sole parameter of either
mass ¯ow rate or Reynolds number. The addition of

heat has also has an e�ect, such as the prediction of
dryout critical heat ¯ux. The experimental results [21]
indicated that thermocapillarity plays an important
role in ®lm burnout. The streamwise thermocapillarity

term in the newly developed model [21] is quite e�ec-
tive in improving the precision of the dryout heat ¯ux
prediction. This term has a direct relationship with

wall heat ¯ux. Although the fractal dimension can
exhibit the in¯uence of wall heating on the hydrody-
namics of falling liquid ®lm ¯ow, the deeper relation-

ship between the fractal dimension and the hydrodyn-
amics of falling ®lm ¯ow is still as yet unknown.
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